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Abstract

Seismic time series provide crucial information for monitoring the state of a volcano with discrete event catalogs describing
impulsive seismic activity and hand-designed features describing more emergent signals (e.g. real-time seismic amplitude mea-
surement for volcanic tremor signals). However, the emergent and long-term seismo-volcanic activity such as volcanic tremors
are a complex and non-stationary phenomena that might contain more information than current methods can retrieve. In the
present study, we consider the whole seismic time series as a valuable source of information by retrieving data-driven continuous
features with an independent component analysis (ICA) and seismogram atlases with Uniform Manifold Approximation and
Projection (UMAP). The data of interest are year-long seismic time series recorded at individual stations near the Klyuchevskoy
Volcanic Group (Kamchatka, Russia). The features extracted from data recorded close to the active volcano depict a succession
of short-lived patterns in the time series, indicating continuously changing signal characteristics. Additionally, the seismogram
atlas reveals that, especially during periods of volcanic activation, the signal evolves continuously with some occasional sudden
changes, resulting in new patterns throughout the recording time. The features and seismogram atlases reveal unique charac-
teristics of the continuous seismograms recorded close to the volcano and related to its activity, suggesting that the complete
seismic time series contains subtle but interesting information not captured by conventional methods. The seismogram atlases

open new avenues to perceive large seismic time series visually and to connect the signal changes to physical processes.
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« With machine learning, we analye one year long seismic time series at individual
stations at Klyuchevskoy volcano

» It seems that the stations close to the volcano witness a constant flux of information

coming from the volcano

e Throughout the recording time, the signal content close to the volcano always changes

and rarely repeats itself
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Seismic time series provide crucial information for monitoring the state of a volcano with
discrete event catalogs describing impulsive seismic activity and hand-designed features de-
scribing more emergent signals (e.g. real-time seismic amplitude measurement for volcanic
tremor signals). However, the emergent and long-term seismo-volcanic activity such as
volcanic tremors are a complex and non-stationary phenomena that might contain more
information than current methods can retrieve. In the present study, we consider the whole
seismic time series as a valuable source of information by retrieving data-driven continuous
features with an independent component analysis (ICA) and seismogram atlases with Uni-
form Manifold Approximation and Projection (UMAP). The data of interest are year-long
seismic time series recorded at individual stations near the Klyuchevskoy Volcanic Group
(Kamchatka, Russia). The features extracted from data recorded close to the active vol-
cano depict a succession of short-lived patterns in the time series, indicating continuously
changing signal characteristics. Additionally, the seismogram atlas reveals that, especially
during periods of volcanic activation, the signal evolves continuously with some occasional
sudden changes, resulting in new patterns throughout the recording time. The features and
seismogram atlases reveal unique characteristics of the continuous seismograms recorded
close to the volcano and related to its activity, suggesting that the complete seismic time
series contains subtle but interesting information not captured by conventional methods.
The seismogram atlases open new avenues to perceive large seismic time series visually and
to connect the signal changes to physical processes.

Seismic time series are a valuable source for monitoring volcanic activity. Traditional
methods rely on discrete event catalogs and hand-designed features to analye seismic sig-
nals, but they may not capture all the valuable information, especially for long-term volcanic
tremors. To overcome this limitation, we applied machine learning techniques on the con-
tinuous seismic time series, capturing patterns in a data-driven fashion. This approach
reveals a continuously evolving seismogram close to the volcano, indicating ongoing changes
in signal characteristics during and outside cataloged tremor periods. Additionally, a two-
dimensional representation of the time series data —called a seismogram atlas —showed
that, during periods of volcanic activity, the seismic signal evolved continuously with occa-
sional sudden changes, resulting in new patterns throughout the recording period. These
findings highlight the unique characteristics of continuous seismograms near the volcano,
suggesting that there is valuable information in the complete seismic time series that con-
ventional methods may miss. The seismogram atlases offer a new visual approach to analye
large seismic data and establish connections between signal changes and underlying physical
processes.

Volcanoes produce a wide range of seismic signals providing valuable information about
the underlying magmatic feeding systems and dynamics (e.g. Chouet & Matoa, 2013;
Journeau et al., 2022; Wilding et al., 2022). Seismo-volcanologists have classified seismic
signals with volcanic origin into distinct classes based on the source mechanism and sig-
nal characteristics. These classes include volcanic-tectonic earthquakes, long-period (LP)
events, hybrid events, tornillos, rockfalls, and volcanic tremors (an overview of different
signal classes is given by, e.g., McNutt, 2005; Chouet & Matoa, 2013). Tools adapted
from earthquake seismology can detect the short-duration impulsive signals in continuous
seismograms and most often locate their underlying sources, resulting in a discrete event
catalog.

Long-duration signals such as volcanic tremors can last from minutes to months and
have a varying appearance in frequency and amplitude (e.g. Julian, 1994; Konstantinou &
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Schlindwein, 2003; Hotovec et al., 2013; Unglert & Jellinek, 2015). Some studies observed
a continuous transition from discrete LP events to tremor episodes and back, making the
boundary between these two signal classes blurry (e.g. Latter, 1979; Fehler, 1983). Often,
an observed tremor signal in the data can not be directly linked to a single process, since
many different source mechanisms may act simultaneously, with potential interactions, re-
sulting in a non-stationary mixed signal (e.g. Konstantinou & Schlindwein, 2003; Chouet &
Matoa, 2013). The complex nature of tremor signals makes it difficult to extract meaning-

ful information from the data and link it to volcanic processes and challenge the notion of
tremor signals as a single signal class. While volcano observatories often use simple single-
station measurements based on the occurrence of volcanic tremors to monitor the state
of the volcano, recent studies have developed more sophisticated methods to identify and
locate tremor sources within a given time window (Seydoux et al., 2016; Soubestre et al.,
2018, 2019; Journeau et al., 2020, 2022).

Machine learning provides a promising approach for automatically analyimg large
amounts of continuous seismograms and inferring patterns in a data-driven fashion. Super-
vised models perform well for tasks such as signal detection and classification of cataloged
signals (e.g., Malfante et al., 2018; Titos et al., 2018; Lara et al., 2020). However, for tremor
signals, supervised models are problematic due to the a-priori information given by the la-
bel “volcanic tremor”, referring to a complex signal with many possible source mechanisms.
In contrast, unsupervised models can infer patterns from continuous seismograms without
requiring predefined labels (e.g. Khler et al., 2010; Holtman et al., 2018; Seydoux et al.,
2020; Ren et al., 2020; Jenkins et al., 2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022;
Steinmann, Seydoux, & Campillo, 2022; Zali et al., 2023).

In this study, we explore individual year-long continuous seismograms recorded in the
vicinity of Klyuchevskoy volcano (Kamchatka, Russia) during an active tremor-dominated
period using independent component analysis (ICA, Comon (1994)) and Uniform Manifold
Approximation and Projection (UMAP, McInnes et al. (2018)). Given the complexity of
seismic signals in a volcanic environment, we believe that continuous seismograms offer new
and different insights into the inner workings of a volcano than current discrete event catalogs
or supervised classification schemes can provide. ICA retrieves continuous features from the
seismic time series, describing the temporal evolution of signal patterns. We are motivated
by the results presented in Steinmann, Seydoux, and Campillo (2022) where the authors
capture blindly the signal-altering effect of superficial surface freemg and thawing onto
a single independent component. In addition, the seismogram atlas a—two-dimensional
data representation of the seismic time series obtained using UM A P-effers a novel way to
visualie the signal content of large seismic time series. By avoiding clustering and focusing
on the analysis of the features and the seismogram atlas, we can observe the continuous
evolution of the signal characteristics over time, providing a more complete picture of the
mixing of different non-stationary seismic sources in seismo-volcanic signals.

The Klyuchevskoy volcano group (KVG) is one of the largest and most active clusters
of subduction volcanoes in the World (e.g., Fedotov et al., 2010; Shapiro, Sens-Schiifelder,
et al., 2017). Its origin is related to the unique tectonic setting at the corner between
the Kuril-Kamchatka and Aleutian trenches. The enhanced supply of the melt from the
mantle might be caused by the around-slab-edge asthenospheric flow (Yogodmski et al.,
2001; Levin et al., 2002) and related crustal extension (Green et al., 2020; Koulakov et al.,
2020) or fluids released from the thick, highly hydrated Hawaiian-Emperor crust subducted
beneath this corner(Dorendorf et al., 2000).

The sustained volcanic activity of the KVG results in nearly constantly occurring seis-
micity including long periods of seismo-volcanic tremors (Dronin et al., 2015; Soubestre et
al., 2018, 2019; Journeau et al., 2022) and numerous earthquakes (Senyukov et al., 2009;



119

120

121

122

124

125

126

127

151

Thelen et al., 2010; Senyukov, 2013; Koulakov et al., 2021). In particular, the deep long-
period earthquakes (DLP) have been observed at the crust-mantle boundary beneath the
Klyuchevskoy volcano(Gorelchik et al., 2004; Levin et al., 2014; Shapiro, Dronin, et al.,

2017; Frank et al., 2018; Galina et al., 2020; Melnik et al., 2020). The temporal correlation
between the deep and shallow seismic activity has been attributed to the transfer of the
fluid pressure from the deep-seated parts of the magmatic system towards shallow mag-
matic reservoirs beneath the active volcanoes (Shapiro, Dronmin, et al., 2017; Journeau et

al., 2022).

We use the data of a joint Russian-German-French temporary seismic experiment KISS
(Klyuchevskoy Investigation —Seismic Structure of an Extraordinary Volcanic System)
(Shapiro, Sens-Schiifelder, et al., 2017). We analye continuous three-component seis-
mograms, which were recorded by six individual stations (Figure 1) between July 2015 and
July 2016. At the beginning of this period, all KVG and surrounding volcanoes were rel-
atively quiescent. The Klyuchevskoy volcano showed signs of reactivation from December
2015 to January 2016 and its full eruption unfolded starting from April 2016. Journeau et
al. (2022) used the network’s spectral covariance matrix (Seydoux et al., 2016) to detect
and locate the most prominent signal in a continuously moving time window. Detections
with relatively well-constrained spatial location were labeled as earthquakes and those with
poorly constrained locations as tremors. We use this catalog in the present study to re-
late the data-driven products of the continuous seismograms with known signal types. We
want to emphasie here that the catalog is a valuable source of information in validating
data-driven results, however, it holds the ground truth neither. The differentiation between
earthquake- and tremor-like signals is based on a manually set threshold and the transition
between these two event types is very likely continuous.

In the following, we want to outline how we create data-driven features and seismo-
gram atlases from continuous seismograms. We first introduce the scattering network which
retrieves a scattering coefficient matrix from the continuous seismogram. The scattering co-
efficient matrix serves as an input for ICA to create the data-driven features and for UMAP
to create the seismogram atlases.

4

First, we apply a scattering network with a sliding window to the continuous three-
component seismograms to retrieve the scattering coefficients (Figure 2). Recently, this type
of network has been used in a number of seismological studies, capturing intriguing patterns
within continuous seismograms (Seydoux et al., 2020; Barkaoui et al., 2021; Rodrigue=t al.,
2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022; Steinmann, Seydoux, & Campillo,
2022; Moreau et al., 2022). The architecture resembles a convolutional neural network with
the difference that each layer produces an output and the convolutional filters, classically
learned in the case of convolutional neural networks, are restricted to a set of predefined
wavelets (Bruna & Mallat, 2013; Andén & Mallat, 2014). Considering a mother wavelet
Y(t), we can define a set of filter banky, (t) = A\ (At) by dilating the mother wavelet)(t)
with a set of dilation factors\ € R. In the frequency domain, the set of wavelet banks
would bet)(w) = 1(w /). The dilation factor\ can then be defined as

=29, k={0,1, ..., JQ1}, (1)
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with @ € N being the number of wavelets per octave andl € N being the number of octaves.
This definition of the dilation factor provides a logarithmic grid of the center frequencies for
the set of wavelet filter banks.

By convolving a time seriest(t) € R with a set of wavelet filter banksy(¢) and
taking the modulus (which plays the role of an activation function), we obtain a real-valued
time-frequency representatiol/y (¢) of the time series called a scalogram such as

Ur(t) = [z x a[(2), (2)

defining the first convolutional layer of the scattering network witdtanding for convolution
operation. In Andén and Mallat (2014) the authors introduce a low-pass fifi{@) to retrieve
the first-order scattering coefficients, as

Sra(t, N = Wax9)(t) = (x| x ) (), (3)

where the low pass filtex(t) smooths the representation and makes it more stable for small
deformation of the signal. However, it also removes other small-scale structures of the signal
which might be important for pattern recognition tasks. This information is recovered by
repeating the convolution and modulus operation, retrieving higher-order scattering coeffi-
cients. Note that the set of dilation factorsdiffers with the layer of the scattering network.
With two sets of wavelet filter banksy, (t) at the first layer andipy, (¢) at the second layer,

we can calculate the second-order scattering coefficients

Sgl'(t, N, )Q) = (| x*lfb\l|*1/)/\2\ *¢)(t) (4)

By repeating this operation many times, we can retrieve higher-order scattering coefficients
which add more and more information. However, Andén and Mallat (2014) already con-
cluded that the information gain beyond second-order scattering coeflicients is marginal
compared to the increasing computational costs. Therefore, we build a two-layer scattering
network recovering first- and second-order scattering coefficients. The wavelets of the scat-
tering network are Morlet wavelets as initially proposed in Andén and Mallat (2014). The
Morlet waveletty)(t) with a center frequencyf is a complex exponential multiplied with a
Gaussian window, defined by

(t) = exp(—i2r [ exp(—t?/a”). (5)

While f are the center frequencies defining the modulation of the Morlet waveletlefines
the exponential drop-off of the waveform. We defineas a function of the bandwidtld and
the center frequencyf, which in turn depends on the Nyquist frequencfy of the signal
z(t) and the dilation factor\

aoS__94 (6)

D Vi

At last, we define our low-pass filter(t) retrieving the scattering coefficients from the
scalogram at each layer. We use a pooling operation that ensures a stable and translation
invariant representation for each window. The pooling operation retrieves a single value for
each scale in the scalogram and, thus, acts as a low pass filter and downsampling operation
(Dumoulin & Visin, 2016). There are many different types of pooling operations, filtering
different types of information. In Seydoux et al. (2020), the authors applied the scattering
network with an average pooling, which averages the scattering coefficients and collapses the
time axis within the sliding window. Other possibilities are maximum pooling or median
pooling where either the maximum or median value is taken for each scale in the scalogram.
In this work, we will consider median pooling to mitigate the effects of impulsive short-term
signals with tectonic or volcanic origin (see Appendix A for more details).

4

With ICA a-blind source separation method-we obtain the data-driven features
from the scattering coefficients. The aim of ICA is the separation of multivariate signals
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into independent, non-Gaussian source signals, which can be formalied in the following way

= ) (7)

where € RFXYN are the N observations of dimension’, € RFX® is the mixing matrix,
and € RN are the C independent sources. ICA estimates by applying the inverse or
pseudo-inverse of the mixing matrix, called unmixing matrix, € R to the observed
data in

- . (8)

ICA solves this equation by maximiimg the statistical independence of the sources in
The independence is estimated by a measurement of non-Gaussianity such as the kurtosis
or negentropy (Hywufinen & Oja, 2000). The number of sources is not known and is one

of the most important parameters impacting the results of ICA. Often, this parameter is set
according to a measurement estimating the information loss such as the explained variance
score. Note that ICA is often described as a generaliation of principal component analysis
(PCA), since the independent components (sources) have no constraints of orthogonality
(Comon, 1994). Also in contrast to PCA, the sign and amplitude of the independent sources
can not be determined, because both and are unknown and a scaling factor can always
be canceled out. Therefore, ICA does not provide any ranking to the retrieved sources. It
is common practice to center and whiten the data in since it constrains the unmixing
matrix to be orthogonal and therefore the number of free parameters reduces (Hywuiinen &
Oja, 2000).

The scattering coeflicients are collected in a data matrixin such a way that the rows
contain the time series of one scattering coefficient and the columns contain all scattering
coefficients for one sample (Figure 2). We retrieve independent sources from the scattering
coeflicients matrix and analye their time series, which have been shown to reveal interesting
patterns in seismic time series (Steinmann, Seydoux, Beaucé, & Campillo, 2022; Steinmann,
Seydoux, & Campillo, 2022). We refer to the time series of the independent sources as fea-
tures for the following text. In a similar mindset, Hywufinen et al. (2010) applied ICA to
the Short-Term Fourier Transform (STFT) of electroencephalography (EEG) and magne-
toencephalography (MEG) time series data, revealing more interesting information related
to brain activity than ICA applied to the actual time series data. Additionally, ICA has
shown successful applications in analymg various types of time series data, such as the
examination of InSAR image time series (Ebmeier, 2016; Gaddes et al., 2018; Ghosh et al.,
2021).

4

UMAP is a manifold learning technique, which has been introduced in the work of
MecInnes et al. (2018). Similar to ICA, UMAP is a tool to reduce the dimensions of a high-
dimensional dataset for downstream tasks such as visualiation. Since we are interested in a
visualiation of the high dimensional scattering coefficient matrix, we restrict the number of
dimensions to two. Any dimensionality reduction technique comes with a loss of information
and the loss depends on the objective of the dimensionality reduction technique. Because
ICA performs a linear mapping, it preserves well the pair-wise distances but it loses in-
formation about local structures. UMAP learns the manifold of the given data and, thus,
performs better in preserving local structures at the price of distorting the global structure.
Hence, the distances between neighboring points are more reliable than distances between
clusters of data points or the area of a cluster. Without going into further details, the
inner workings of UM AP are based on topological data analysis and Riemannian Geometry,
providing a complex but safe and sound mathematical background (see the original work of
MeclInnes et al., 2018, for more details). It shares similarities with t-SNE, which has been
used extensively for visualiations since its appearance in the 2000s (Van der Maaten &
Hinton, 2008). However, compared to UMAP, t-SNE performs poorly in preserving global
structures and its computation time is much slower (Becht et al., 2019). Despite its relatively
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recent introduction, UMAP has been already utilied in many scientific domains to create a
two-dimensional representations, simplifying the visualiation of large and high-dimensional
datasets. The resulting two-dimensional UMAP spaces have been coined “atlases” such as
the activation atlas of neural networks (Carter et al., 2019) or the metagenomic atlas (Lin
et al., 2022).

UMAP comes with a set of hyperparameters to tune such as the number of neighbors
and the minimum distance, drawing the focus either towards preserving local or global
structures. The number of neighbors limits the number of neighboring points when UMAP
learns the local manifold structure. A low number draws the focus to the local structure
while losing the bigger picture. A large number draws the focus on the global structure while
losing finer details. The minimum distance controls how closely UMAP is allowed to bring
data points together. A low number results in a more dense and clumpier representation
and preserves better the local structure of the data. A large number avoids putting points
close to each other and draws a broader picture of the data.

5

We apply the scattering network with a sliding window of 20 min and an overlap of
10 min to the three-component seismograms of station SV13, resulting in a temporal reso-
lution of 10 min of the scattering coefficient matrix. The minimal amount of seismic pre-
processing and the exact setup of the network is described in Appendix B and Figure B1
therein. We visualie the time series of the first- and second-order coefficients of the east
channel together with the catalog of Journeau et al. (2022) in Figure B2. The scattering
coefficient matrix is centered and whitened with a PCA before we apply ICA. We apply ICA
models with four {y), 12 (M;2), and 50 (Mso) independent sources to explore the impact
of the number of componentsM, reaches an explained variance score of 94 %\{;5 reaches
an explained variance score of 98 % and/5y reaches an explained variance score of 99%.
Figure 3 shows the smoothed time history of the independent sources (features) of each
model. The features show negative and positive values of arbitrary units centered around
gro due to the centering and whitening of the input data. We sort the features according
to their maximum absolute amplitude appearance in time, helping the visualiation of any
time-dependent processes.

The features of the three models show very different time series and in the following, we
want to use the three models to understand better the underlying seismic data. First of all,
we provide a qualitative comparison between the features of the three models. While there
is no single feature matching betweelddy and M5y (Figure 3b and d), we can find similar
features betweenMy and Mjs such as the second feature in both models (Figure 3b and
¢). Msg is very different to the other two models, since its features appear more sparse, i.e.
they are mainly centered around ero except for a short duration. Moreover, it is striking
that if one feature shows large amplitudes in negative or positive direction (saturated blue
and red colors), almost every other feature is centered around ero. These characteristics
of M3y together with the sorting of the features result in this color-saturated diagonal line
in the time-feature space. It appears that at each data point in this 50-dimensional feature
space is located at the center for 49 dimensions. In contrast, the data points represented by
the features of M, and M2 do have non-ero values for more than one dimension.

M

To understand better what the features represent, we recall the equation of ICA (see
Equation 7 and 8). The whitened and centered scattering coefficient matrixs estimated
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as the sum of rank-1 matrices, resulting from the outer product of a feature (rows jn
with the corresponding columns in the mixing matrix. Hence, the columns of reveal
how each feature contributes to the estimation of. The visualiation of the columns of
and its outer product with the corresponding feature can help to understand better the
underlying signal characteristic of each feature. In Figure 4 we reorganie and visualie the
mixing weights of theld, model according to the center frequencies of the first- and second-
order wavelets. We can use the shown mixing weights to attribute signal characteristics to
the features of M, in Figure 3b. For example, feature 3 shows mainly negative amplitudes
during the occurrence of cataloged tremors and positive amplitudes during the absence
of tremors (Figure 3a and b). The corresponding mixing weights show mainly negative
amplitudes peaking atf; =2 Hzin all components and for both first- and second-order
scattering coefficients (Figure 4). Figure 5a, b, and ¢ show the reconstructed first-order
scattering coefficients, resulting from the outer product of the third feature with its mixing
weights. We disregard the second-order scattering coefficients for visualiation purposes,
however, we want to emphasie that they contain important signal information. We also
add the mean over the scattering coefficients, which we subtracted before the ICA during the
whitening process. The reconstruction makes clear that the tremor periods are characteried
by a broadband amplitude increase peaking around 2 Hz Note that both the mixing weights
and the feature amplitudes during tremor-active periods are negative and the outer product
reveals an amplitude increase. This example shows the ambiguity of the sign attached to
the sources: any change of sign in feature 3 can be equalied with a change of sign of the
corresponding column vector of the mixing matrix, resulting in the same rank-1 matrix.

Another interesting example is the second feature, which shows strong positive am-
plitudes during the tremor sequences in August and September (Figure 3a and b). The
corresponding mixing weights show positive and negative amplitudes depending on the fre-
quencies f; and fy and the channel (Figure 4). Similar to before, we can visualie the
first-order scattering coefficients of the obtained rank-1 matrix by the outer product of the
mixing weights with the second feature (Figure 5d, e, and ). We see a clear anti-correlation
for scattering coefficients below and above 1Hzfor the east channel (Figure 5d). An am-
plitude increase above 1Hzoccurs together with an amplitude decrease below 1 Hz(e.g.
the tremor-dominated time periods in August and September). Similarly, an amplitude
increase below 1 Hzoccurs together with an amplitude decrease above 1 Hz(e.g. October
to December 2015). This anti-correlation can be already observed by the negative and pos-
itive weights of the mixing matrix (source 2, Figure 4). Weights with the same sign show
the scattering coefficients which correlate with the corresponding independent source. The
observed anti-correlation is nothing physical and this rank-1 matrix reflects only a part of
the data without taking into account the other independent sources. Nonetheless, Figure 5
suggests that the tremor period in August and September is different from the other tremor
episodes mainly due to different patterns at the east component around 1 Hz

M

An outstanding characteristic off5g is the successive domination of a single feature in
time. The large number of features makes it unfeasible to visualiz and interpret all mixing
weights and, therefore, we only focus on a subset of features to show the differencd/po
Figure 6 shows the mixing weights associated with the features 18 to 22, which describe
the tremor onset at the beginning of December with negative and positive amplitudes.
Compared to the mixing weights of th#fy model, the mixing weights of thd/5y show finer
nuances and more complex patterns across neighboring scattering coefficients, revealing
signal changes beyond pure amplitude increases or frequency shifts. At this point, we
want to recall thatM, reaches an explained variance score of 94 % anflf5y reaches an
explained variance score of 98 %. We suggested that the third feature dffy is related
to the broadband energy peaking around 2 Hzand it correlates with the tremor detections.
This indicates that all recorded tremors are characteried by this broadband amplitude
variation and it explains a large part of the data’s variance. However, thdy feature
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does not exist anymore withM59 and the tremor active periods are described by multiple
features. Mxy reveals that these tremor signals show complex variations beyond broadband
amplitude variation. It seems that these more complex signal variations are a small part
of the data’s variance -we gain less than 6 % variance fronddy to Msg -but they might
contain crucial information about ongoing volcanic processes. Interestingly, these signal
alterations captured by the features do not occur randomly in time but they occur for a
certain amount of time before another pattern takes over.

The different ICA realiation can be seen as a hierarchical ICA, where a model with a
larger number of components such asMyy -€an account for smaller differences in the signal
characteristics. In fact, this approach shares similarities to the hierarchical exploration
of continuous seismograms with hierarchical clustering (Steinmann, Seydoux, Beaucé, &
Campillo, 2022). However, hierarchical clustering assigns a cluster to a data point which can
contain multiple types of signals. The present study shows an approach where a single data
point is described by multiple features, which correspond to specific signal characteristics
captured with scattering coefficients.

4

The M5y model of station SV13 pictures a continuous seismogram where a pattern
occurs mainly once or twice in a constrained time window during the whole recording time.
This seems surprising and it might be a particular characteristic of the data recorded close
to the active Klyuchevskoy volcano. By retrievidgsy models from different stations with
an increasing distance to the volcano, we can make a qualitative comparison to station
SV13 (see Figure 7). The considered stations are located between 5and 122km away from
the active volcano. In general, the diagonal line in the time feature space degrades with
increasing distance to the volcano. The periods with a high detection rate of tremors
(December to February and from March onwards) show this characteristic diagonal line
even for stations further away such as SV7 and OR18. This suggests that tremor signals
are mainly responsible for the diagonal line in the time feature space. Interestingly, stations
close to the volcano, show an almost continuous diagonal line, indicating a continuous flow
of information coming from the volcano. The catalog relies on a stable signal seen by the
majority of stations within the network (Journeau et al., 2022). Therefore, tremor signals
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with a weak amplitude witnessed by only close-by stations are not detected and located.
The 50 features of the individual stations indicate an almost constant flux of information
coming from the volcano, not captured by the catalogs.

We can complement the observations and interpretation of the features with seismogram
atlases for each station obtained with UMAP (Figure 8). We color-code the data points with
their corresponding calendar time, highlighting the time evolution of the seismic time series.
The seismogram atlases of SV13, IR18, and IR12 picture complex structures where data
points with different colors hardly overlap (Figure 8a-c). Many data points with a similar
color seem to be located close to each other, which gives rise to a smooth color gradient
across the complex data structure. Therefore, neighboring data points are likely close to
each other in time, suggesting smooth and slow signal changes. However, there are also
isolated or disconnected structures indicating more sudden signal changes from time to
time, especially for stations IR12 and IR18. The atlases of the data recorded at SV7, OR18,
and ESO look different: the data points are more concentrated at the center with partly
overlapping colors (Figure 8e-f).

The seismogram atlases share the same hyperparameters: the minimum distance is set
to 0.5 and the number of neighbors to 50. We tested different hyperparameters for the data
of station SV13 (see Figure B3). The atlas depicts different cluster shapes and distances
with regard to the hyperparameters, emphasimg the limited notion of global distances and
structures in the atlas. However, all the examples confirm the smooth time gradient and
little to no overlap of different time periods.

SV13 is the closest station to the volcano and shows a variety of connected and dis-
connected patterns, picturing a complex signal evolution due to the active volcano. The
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catalogs of Journeau et al. (2022) provide signal labels that can help to identify known
areas in the atlas. In the upper image of Figure 9 we mark data points that match in time
with a known detection of tremor signals, DLP swarms or earthquake-like signals. We want
to note that Journeau et al. (2022) provides these labels based on thresholding variables
of the network’s covariance matrix. According to that, they label the event detections as
either earthquake-like and tremor signals. In total, we have 47.360 data points and we can
connect 13.027 data points to known tremor signals, 682 data points to earthquake-like sig-
nals and 38 data points to DLP swarms. Therefore, most of the 47.360 data points do not
match with a cataloged event. Nevertheless, the matching data points cover almost the same
area as the non-matching data points, indicating that the non-matching data points contain
similar signals to the cataloged signal types. Thus, the data contains almost no quiet pe-
riod (the classic seismic 'noise’), and tremor- or earthquake-like signals seem to be recorded
all the time. This agrees with the findings of Makus et al. (2023) where their reference
correlation function for the same dataset is dominated by tremor activity. The scattering
coefficients contain information about impulsive and continuous signal characteristics and,
therefore, the earthquake-like signal are separated from the tremor-like signals in the atlas.
However, we see that the shared boundaries are continuous and blurry, indicating that we
have continuous transitions between the two signal types. Journeau et al. (2022) observed
the same characteristic within the variables space obtained from the network’s covariance
matrix. The tremor signals picture complex data point structures, which mainly show a
continuous evolution in time (see Figure 8a and Figure 9). The earthquake-like signals form
a data cloud structure in the south-east of the seismogram atlas with no strong time evo-
lution. The DLP swarms are located close to each other at one of the blurry boundaries
between tremor- and earthquake-like signals. This suggests that the different DLP swarm
detections share signal similarities and they have signal characteristics of both earthquake-
and tremor-like signals, confirming the common perception of DLP swarms.
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To visualie the signals behind the data points and to understand better the UMAP
space, we want to follow the active tremor period from the beginning of December to the
end of February in the atlas and depict the spectrograms behind some data points as an
example (Figure 9). Note that the atlas contains the information of the three component
data but we only visualig here the spectrograms of the east component. The start of the
tremor period begins with a separated linear structure in the north of the atlas, indicating
a sudden onset of the tremor signals. During the first weeks until the end of December, the
tremor signal is continuous and shifts in frequency and amplitude. The connected and curved
structure indicates continuous changes in the signal characteristics. At the end of December
repetitive impulsive events seem to superimpose the continuous signal and the connected
and curved structures end in a relatively small data cloud, indicating a temporary stop of
the continuous signal change. We can see something similar happening for the 50 features:
a rapid succession of a few features occur at early December compared to late December
(Figure 3d). From the small data cloud, the data points form another curved elongated
structure during January before they connect to another data cloud structure at the end of
January (Figure 9). The spectrograms show that during these times the repetitive impulsive
signals change their interval time and frequency content, while the continuous broadband
signals change their amplitude and frequency content (green and red framed spectrograms
in Figure 9). After mid-February the continuous and impulsive signals decease and the data
points enter the cluster of earthquake-like signals. The time evolution of the seimogram
atlas is even better captured in the attached movie S1.

By combining ICA with a scattering network, we retrieved continuous and data-driven
features from seismic time series recorded at individual stations in the vicinity of the KVG.
An ICA model with 4 independent sources obtained an explained variance score of 94 %
and two of its features correlated with the general occurrence of tremor signals. Thanks
to the mixing weights we were able to tie one of the correlating features to a broadband
amplitude increase centered around 2 Hz The low number of sources can not account for
the smaller differences in the tremor signals and it finds features that describe most of the
tremor signals. An ICA model with 50 independent sources obtained an explained variance
score of 996 % and depicts a seismic time series with a succession of different short-lived
patterns across the whole recording time. A comparison to other stations located further
away from the active Klyuchevskoy volcano suggested that this behavior is unique to the
data recorded close to the volcano. The seismogram atlases obtained with UMAP depict
continuous and sudden signal characteristic changes, in particular during times of cataloged
tremors. It revealed a sudden onset of tremor signals with the first occurrence of shallow
tremors in early December, while the stop and re-start of tremors in February and March,
respectively, are characteried by a more continuous emergence of these signals (see also
movie S1). During the one-year recording time, the data points related to tremor signals
continuously explore new terrain in the seismogram atlas, indicating that there is always a
minimal amount of signal difference. This is in agreement with thk, model where each
feature dominates for a short period of time. The seismogram atlas adds information if the
seismic signals change rather continuously or suddenly by placing the next data point far
away or close by. One of the main limitations of this study is that we are not able to link the
changing characteristics to physical processes. The mixing weights and the reconstructed
scattering coefficients help linking the data-driven features to information encoded in the
scattering coefficient space, however, the interpretation is limited as we have seen for the
second feature in theM, model. Moreover, theMs, model provides too many features with
complex mixing weight patterns, making an individual inspection not feasible. Nonetheless,
the features revealed unique characteristics of the seismic time series recorded close to the
volcano, indicating that the complete seismic time series contains interesting and subtle
information which are not captured by conventional methods such as discrete event catalog
or hand-engineered features. The seismogram atlases offer interesting and novel ways to
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Figure Al. Comparison between Fourier spectrum and scattering coe cients of a seismic signal.
(@) shows an example seismogram with normalized amplitude in time domain. (b) shows its
corresponding Fourier spectrogram. (¢) shows the Fourier amplitude spectrum and the rst order
median and maximum pooled scattering coe cients of the signal shown in (a). (d) shows the
second order maximum pooled scattering coe cients and (e) shows the second order median pooled
scattering coe cients as a function of the center frequencies f1 and f.

want to focus on tremor signal.

Appendix B Data Processing and Scattering Network Design

The seismic data is demeaned, detrended, and down-sampled to a sampling rate of
25Hz. The rst layer wavelets are adapted to the possible frequency content of the tremors;
their center frequencies range from ¥8to 10 Hz with a logarithmic grid (see Figure Bla and
b). The second layer wavelets start at much lower frequencies since they gather information
about the modulation and shape of the signal (Figure B1c and d). The rst layer covers 4
octaves and is densely spaced with 4 wavelets per octave. The second layer covers 8 octaves
and is sparsely sampled with 1 wavelet per octave.

References

Ancken, J., & Mallat, S. (2014). Deep scattering spectrum. IEEE Transactions on Signal
Processing 62(16), 4114{4128.

Barkaoui, S., Lognonre, P., Kawamura, T., Stutzmann, E., Seydoux, L., Maarten, V., ...
others (2021). Anatomy of continuous mars seis and pressure data from unsupervised
learning. Bulletin of the Seismological Society of America 111(6), 2964{2981.

{19{



605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

continuous seismic wavefield records using self-organimg map§
b , 8 (3),16194630.

Konstantinou, K. I., & Schlindwein, V. (2003). Nature, wavefield properties and source
mechanism of volcanic tremor: a review.tffidhi
R 9 (1-4), 161187.

Koulakov, I., Plechov, P., Mania, R., Walter, T. R., Smirnov, S. Z., Abkadyrov, I., ...
Dronina, S.Y. (2021). Anatomy of the begmianny volcano merely before an explosive

eruption on 20.12.2017f8 4&® ,1 (1),1758. doi: 10.1038/s41598-021-81498
-9

Koulakov, I., Shapiro, N. M., Sens-Schifelder, C., Luehr, B. G., Gordeev, E. 1., Jakovlev,
A., ... Stupina, T. (2020). Mantle and crustal sources of magmatic activity of
klyuchevskoy and surrounding volcanoes in kamchatka inferred from earthquake to-
mography. tfigHk , 3 (10), €2020JB020097.

doi: 10.1029/2020JB020097

Lara, P. E. E., Fernandes, C. A. R., Ina, A., Mars, J. [., Métaxian, J.-P., Dalla Mura,
M., & Malfante, M. (2020). Automatic multichannel volcano-seismic classification
using machine learning and emd Hifgi#y

oy , &, 13221331.
Latter, J. H. (1979). Volcanological observations at tongariro national park. ii: Types and
classification of volcanic earthquakes, 1976-197§® @

Levin, V., Dromina, S. Y., Gavrilenko, M., Carr, M. J., & Senyukov, S. L. (2014). Seis-
mically active subcrustal magma source of the klyuchevskoy volcano in kamchatka,
russia. &, 2 (11), 983-986. doi: 10.1130/G35972.1

Levin, V., Shapiro, N., Park, J., & Ritwoller, M. (2002). Seismic evidence for catastrophic

slab loss beneath kamchatkad/ , 4 (6899), 763-767. doi: 10.1038 /nature00973
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., ... others (2022). Evolutionary-scale
prediction of atomic level protein structure with a language modil. , 202207.

Makus, P., Sens-Scbitfelder, C., Illien, L., Walter, T. R., Yates, A., & Tilmann, F. (2023).
Deciphering the whisper of volcanoes: Monitoring velocity changes at kamchatka’s
klyuchevskoy group with fluctuating noise fieldstplR
t , €2022JB025738.

Malfante, M., Dalla Mura, M., Mars, J. 1., Métaxian, J.-P., Macedo, O., & Ina, A. (2018).
Automatic classification of volcano seismic signaturedipgd
bl , 3 (12), 10645.

MeclInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and
projection for dimension reductiongg .

McNutt, S. R. (2005). Volcanic seismologidids ,

8 (1), 461491.

Melnik, O., Lyakhovsky, V., Shapiro, N. M., Galina, N., & Bergal-Kuvikas, O. (2020).
Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic
magmas. fl , 1 (1), 3918. doi: 10.1038/s41467-020-17759-4

Moreau, L., Seydoux, L., Weiss, J., & Campillo, M. (2022). Analysis of micro-seismicity
in sea ice with deep learning and bayesian inference: application to high-resolution
thickness monitoring.Z® , 149.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... others
(2011). Scikit-learn: Machine learning in pythorkiibiat
4 , 2, 28252830.

Ren, C. X., Peltier, A., Ferraimi, V., Rouet-Leduc, B., Johnson, P. A., & Brenguier, F.
(2020). Machine learning reveals the seismic signature of eruptive behavior at piton
de la fournaise volcano ji , 7 (3), e2019GL085523.

Rodriguez A. B., Balestriero, R., De Angelis, S., Benitez M. C., Zuccarello, L., Baraniuk,
R., ... Maarten, V. (2021). Recurrent scattering network detects metastable be-
havior in polyphonic seismo-volcanic signals for volcano eruption forecastig.

i .0, 123.

Senyukov, S. L. (2013). Monitoring and prediction of volcanic activity in kamchatka from



649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

seismological data: 2000{2010.Journal of Volcanology and Seismology 7 (1), 86{97.
doi: 10.1134/S0742046313010077

Senyukov, S. L., Droznina, S. Y., Nuzhdina, I. N., Garbuzova, V. T., & Kozhevnikova, T. Y.
(2009). Studies in the activity of klyuchevskoi volcano by remote sensing techniques
between january 1, 2001 and july 31, 2005.Journal of Volcanology and Seismology
3(3), 191{199. doi: 10.1134/S0742046309030051

Seydoux, L., Balestriero, R., Poli, P., De Hoop, M., Campillo, M., & Baraniuk, R. (2020).
Clustering earthquake signals and background noises in continuous seismic data with
unsupervised deep learningNature communications, 11(1), 1{12.

Seydoux, L., Shapiro, N. M., de Rosny, J., Brenguier, F., & Lances, M. (2016). Detecting
seismic activity with a covariance matrix analysis of data recorded on seismic arrays.
Geophysical Journal International, 204(3), 1430{1442.

Shapiro, N. M., Droznin, D. V., Droznina, S. Y., Senyukov, S. L., Gusev, A. A., & Gordeev,
E. I. (2017). Deep and shallow long-period volcanic seismicity linked by uid-pressure
transfer. Nat. Geosci., 10(6), 442{445. doi: 10.1038/nge02952

Shapiro, N. M., Sens-Schenfelder, C., Lshr, B. G., Weber, M., Abkadyrov, I., Gordeev,

E. I, ... Saltykov, V. A. (2017). Understanding kamchatka's extraordinary: Volcano
cluster. EOS: Transactions, American Geophysical Union 98(7), 12{17. doi: 10.1029/
2017E0071351

Soubestre, J., Seydoux, L., Shapiro, N., De Rosny, J., Droznin, D., Droznina, S. Y., ...
Gordeev, E. (2019). Depth migration of seismovolcanic tremor sources below the
klyuchevskoy volcanic group (kamchatka) determined from a network-based analysis.
Geophysical Research Letters46(14), 8018{8030.

Soubestre, J., Shapiro, N. M., Seydoux, L., de Rosny, J., Droznin, D. V., Droznina, S. Y., ...
Gordeev, E. I. (2018). Network-based detection and classi cation of seismovolcanic
tremors: Example from the klyuchevskoy volcanic group in kamchatka. Journal of
Geophysical Research: Solid Earth123(1), 564{582.

Steinmann, R., Seydoux, L., Beaue, E., & Campillo, M. (2022). Hierarchical exploration of
continuous seismograms with unsupervised learningournal of Geophysical Research:
Solid Earth, 127(1), e2021JB022455.

Steinmann, R., Seydoux, L., & Campillo, M. (2022). Ai-based unmixing of medium and
source signatures from seismograms: Ground freezing pattern&eophysical Research
Letters, 49(15), e2022GL098854.

Thelen, W., West, M., & Senyukov, S. (2010). Seismic characterization of the fall 2007 erup-
tive sequence at bezymianny volcano, russiaJournal of Volcanology and Geothermal
Research 194(4), 201-213. doi: https://doi.org/10.1016/j.jvolgeores.2010.05.010

Titos, M., Bueno, A., Garca, L., Bentez, M. C., & Ibanez, J. (2018). Detection and
classi cation of continuous volcano-seismic signals with recurrent neural networks.
IEEE Transactions on Geoscience and Remote Sensings7(4), 1936{1948.

Unglert, K., & Jellinek, A. M. (2015). Volcanic tremor and frequency gliding during dike
intrusions at kilauea|a tale of three eruptions. Journal of Geophysical Research: Solid
Earth, 120(2), 1142-1158. doi: 10.1002/2014JB011596

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research 9(11).

Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2022). The magmatic web beneath
hawai "i. Science eade5755.

Yogodzinski, G., Lees, J., Churikova, T., Dorendorf, F., Weerner, G., & Volynets, O. (2001).
Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.
Nature, 409(6819), 500-504. doi: 10.1038/35054039

Zali, Z., Mousavi, S. M., Ohrnberger, M., Eibl, E., & Cotton, F. (2023). Tremor clustering
reveals precursors and evolution of the 2021 geldingadalir eruptionResearch Square
doi: 10.21203/rs.3.rs-2716246/v1

{25{



