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Abstract

Seismic time series provide crucial information for monitoring the state of a volcano with discrete event catalogs describing

impulsive seismic activity and hand-designed features describing more emergent signals (e.g. real-time seismic amplitude mea-

surement for volcanic tremor signals). However, the emergent and long-term seismo-volcanic activity such as volcanic tremors

are a complex and non-stationary phenomena that might contain more information than current methods can retrieve. In the

present study, we consider the whole seismic time series as a valuable source of information by retrieving data-driven continuous

features with an independent component analysis (ICA) and seismogram atlases with Uniform Manifold Approximation and

Projection (UMAP). The data of interest are year-long seismic time series recorded at individual stations near the Klyuchevskoy

Volcanic Group (Kamchatka, Russia). The features extracted from data recorded close to the active volcano depict a succession

of short-lived patterns in the time series, indicating continuously changing signal characteristics. Additionally, the seismogram

atlas reveals that, especially during periods of volcanic activation, the signal evolves continuously with some occasional sudden

changes, resulting in new patterns throughout the recording time. The features and seismogram atlases reveal unique charac-

teristics of the continuous seismograms recorded close to the volcano and related to its activity, suggesting that the complete

seismic time series contains subtle but interesting information not captured by conventional methods. The seismogram atlases

open new avenues to perceive large seismic time series visually and to connect the signal changes to physical processes.
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Machine learning analysis of seismograms reveals a1

continuous plumbing system evolution beneath the2

Klyuchevskoy volcano in Kamchatka, Russia3
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Key Points:11

• With machine learning, we analyze one year long seismic time series at individual12

stations at Klyuchevskoy volcano13

• It seems that the stations close to the volcano witness a constant flux of information14

coming from the volcano15

• Throughout the recording time, the signal content close to the volcano always changes16

and rarely repeats itself17

Corresp onding author: Ren´e Steinmann, rene.steinmann@gfz-potsdam.de
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Abstract18

Seismic time series provide crucial information for monitoring the state of a volcano with19

discrete event catalogs describing impulsive seismic activity and hand-designed features de-20

scribing more emergent signals (e.g. real-time seismic amplitude measurement for volcanic21

tremor signals). However, the emergent and long-term seismo-volcanic activity such as22

volcanic tremors are a complex and non-stationary phenomena that might contain more23

information than current methods can retrieve. In the present study, we consider the whole24

seismic time series as a valuable source of information by retrieving data-driven continuous25

features with an independent component analysis (ICA) and seismogram atlases with Uni-26

form Manifold Approximation and Projection (UMAP). The data of interest are year-long27

seismic time series recorded at individual stations near the Klyuchevskoy Volcanic Group28

(Kamchatka, Russia). The features extracted from data recorded close to the active vol-29

cano depict a succession of short-lived patterns in the time series, indicating continuously30

changing signal characteristics. Additionally, the seismogram atlas reveals that, especially31

during periods of volcanic activation, the signal evolves continuously with some occasional32

sudden changes, resulting in new patterns throughout the recording time. The features and33

seismogram atlases reveal unique characteristics of the continuous seismograms recorded34

close to the volcano and related to its activity, suggesting that the complete seismic time35

series contains subtle but interesting information not captured by conventional methods.36

The seismogram atlases open new avenues to perceive large seismic time series visually and37

to connect the signal changes to physical processes.38

Plain Language Summary39

Seismic time series are a valuable source for monitoring volcanic activity. Traditional40

methods rely on discrete event catalogs and hand-designed features to analyze seismic sig-41

nals, but they may not capture all the valuable information, especially for long-term volcanic42

tremors. To overcome this limitation, we applied machine learning techniques on the con-43

tinuous seismic time series, capturing patterns in a data-driven fashion. This approach44

reveals a continuously evolving seismogram close to the volcano, indicating ongoing changes45

in signal characteristics during and outside cataloged tremor periods. Additionally, a two-46

dimensional representation of the time series data – called a seismogram atlas – showed47

that, during periods of volcanic activity, the seismic signal evolved continuously with occa-48

sional sudden changes, resulting in new patterns throughout the recording period. These49

findings highlight the unique characteristics of continuous seismograms near the volcano,50

suggesting that there is valuable information in the complete seismic time series that con-51

ventional methods may miss. The seismogram atlases offer a new visual approach to analyze52

large seismic data and establish connections between signal changes and underlying physical53

processes.54

1 Intro duction55

Volcanoes produce a wide range of seismic signals providing valuable information about56

the underlying magmatic feeding systems and dynamics (e.g. Chouet & Matoza, 2013;57

Journeau et al., 2022; Wilding et al., 2022). Seismo-volcanologists have classified seismic58

signals with volcanic origin into distinct classes based on the source mechanism and sig-59

nal characteristics. These classes include volcanic-tectonic earthquakes, long-period (LP)60

events, hybrid events, tornillos, rockfalls, and volcanic tremors (an overview of different61

signal classes is given by, e.g., McNutt, 2005; Chouet & Matoza, 2013). Tools adapted62

from earthquake seismology can detect the short-duration impulsive signals in continuous63

seismograms and most often locate their underlying sources, resulting in a discrete event64

catalog.65

Long-duration signals such as volcanic tremors can last from minutes to months and66

have a varying appearance in frequency and amplitude (e.g. Julian, 1994; Konstantinou &67
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Schlindwein, 2003; Hotovec et al., 2013; Unglert & Jellinek, 2015). Some studies observed68

a continuous transition from discrete LP events to tremor episodes and back, making the69

boundary between these two signal classes blurry (e.g. Latter, 1979; Fehler, 1983). Often,70

an observed tremor signal in the data can not be directly linked to a single process, since71

many different source mechanisms may act simultaneously, with potential interactions, re-72

sulting in a non-stationary mixed signal (e.g. Konstantinou & Schlindwein, 2003; Chouet &73

Matoza, 2013). The complex nature of tremor signals makes it difficult to extract meaning-74

ful information from the data and link it to volcanic processes and challenge the notion of75

tremor signals as a single signal class. While volcano observatories often use simple single-76

station measurements based on the occurrence of volcanic tremors to monitor the state77

of the volcano, recent studies have developed more sophisticated methods to identify and78

locate tremor sources within a given time window (Seydoux et al., 2016; Soubestre et al.,79

2018, 2019; Journeau et al., 2020, 2022).80

Machine learning provides a promising approach for automatically analyzing large81

amounts of continuous seismograms and inferring patterns in a data-driven fashion. Super-82

vised models perform well for tasks such as signal detection and classification of cataloged83

signals (e.g., Malfante et al., 2018; Titos et al., 2018; Lara et al., 2020). However, for tremor84

signals, supervised models are problematic due to the a-priori information given by the la-85

bel “volcanic tremor”, referring to a complex signal with many possible source mechanisms.86

In contrast, unsupervised models can infer patterns from continuous seismograms without87

requiring predefined labels (e.g. Köhler et al., 2010; Holtzman et al., 2018; Seydoux et al.,88

2020; Ren et al., 2020; Jenkins et al., 2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022;89

Steinmann, Seydoux, & Campillo, 2022; Zali et al., 2023).90

In this study, we explore individual year-long continuous seismograms recorded in the91

vicinity of Klyuchevskoy volcano (Kamchatka, Russia) during an active tremor-dominated92

period using independent component analysis (ICA, Comon (1994)) and Uniform Manifold93

Approximation and Projection (UMAP, McInnes et al. (2018)). Given the complexity of94

seismic signals in a volcanic environment, we believe that continuous seismograms offer new95

and different insights into the inner workings of a volcano than current discrete event catalogs96

or supervised classification schemes can provide. ICA retrieves continuous features from the97

seismic time series, describing the temporal evolution of signal patterns. We are motivated98

by the results presented in Steinmann, Seydoux, and Campillo (2022) where the authors99

capture blindly the signal-altering effect of superficial surface freezing and thawing onto100

a single independent component. In addition, the seismogram atlas —a two-dimensional101

data representation of the seismic time series obtained using UMAP— offers a novel way to102

visualize the signal content of large seismic time series. By avoiding clustering and focusing103

on the analysis of the features and the seismogram atlas, we can observe the continuous104

evolution of the signal characteristics over time, providing a more complete picture of the105

mixing of different non-stationary seismic sources in seismo-volcanic signals.106

2 Klyuchevskoy Volcano Group and its Seismic Activity107

The Klyuchevskoy volcano group (KVG) is one of the largest and most active clusters108

of subduction volcanoes in the World (e.g., Fedotov et al., 2010; Shapiro, Sens-Scḧonfelder,109

et al., 2017). Its origin is related to the unique tectonic setting at the corner between110

the Kuril-Kamchatka and Aleutian trenches. The enhanced supply of the melt from the111

mantle might be caused by the around-slab-edge asthenospheric flow (Yogodzinski et al.,112

2001; Levin et al., 2002) and related crustal extension (Green et al., 2020; Koulakov et al.,113

2020) or fluids released from the thick, highly hydrated Hawaiian-Emperor crust subducted114

beneath this corner(Dorendorf et al., 2000).115

The sustained volcanic activity of the KVG results in nearly constantly occurring seis-116

micity including long periods of seismo-volcanic tremors (Droznin et al., 2015; Soubestre et117

al., 2018, 2019; Journeau et al., 2022) and numerous earthquakes (Senyukov et al., 2009;118

–3–
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Thelen et al., 2010; Senyukov, 2013; Koulakov et al., 2021). In particular, the deep long-119

period earthquakes (DLP) have been observed at the crust-mantle boundary beneath the120

Klyuchevskoy volcano(Gorelchik et al., 2004; Levin et al., 2014; Shapiro, Droznin, et al.,121

2017; Frank et al., 2018; Galina et al., 2020; Melnik et al., 2020). The temporal correlation122

between the deep and shallow seismic activity has been attributed to the transfer of the123

fluid pressure from the deep-seated parts of the magmatic system towards shallow mag-124

matic reservoirs beneath the active volcanoes (Shapiro, Droznin, et al., 2017; Journeau et125

al., 2022).126

3 The Data127

We use the data of a joint Russian-German-French temporary seismic experiment KISS128

(Klyuchevskoy Investigation – Seismic Structure of an Extraordinary Volcanic System)129

(Shapiro, Sens-Schönfelder, et al., 2017). We analyze continuous three-component seis-130

mograms, which were recorded by six individual stations (Figure 1) between July 2015 and131

July 2016. At the beginning of this period, all KVG and surrounding volcanoes were rel-132

atively quiescent. The Klyuchevskoy volcano showed signs of reactivation from December133

2015 to January 2016 and its full eruption unfolded starting from April 2016. Journeau et134

al. (2022) used the network’s spectral covariance matrix (Seydoux et al., 2016) to detect135

and locate the most prominent signal in a continuously moving time window. Detections136

with relatively well-constrained spatial location were labeled as earthquakes and those with137

poorly constrained locations as tremors. We use this catalog in the present study to re-138

late the data-driven products of the continuous seismograms with known signal types. We139

want to emphasize here that the catalog is a valuable source of information in validating140

data-driven results, however, it holds the ground truth neither. The differentiation between141

earthquake- and tremor-like signals is based on a manually set threshold and the transition142

between these two event types is very likely continuous.143

4 From Continuous Seismograms to Data-Driven Features and Seismo-144

gram Atlases145

In the following, we want to outline how we create data-driven features and seismo-146

gram atlases from continuous seismograms. We first introduce the scattering network which147

retrieves a scattering coefficient matrix from the continuous seismogram. The scattering co-148

efficient matrix serves as an input for ICA to create the data-driven features and for UMAP149

to create the seismogram atlases.150

4.1 The Scattering Network151

First, we apply a scattering network with a sliding window to the continuous three-
component seismograms to retrieve the scattering coefficients (Figure 2). Recently, this type
of network has been used in a number of seismological studies, capturing intriguing patterns
within continuous seismograms (Seydoux et al., 2020; Barkaoui et al., 2021; Rodŕıguez et al.,
2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022; Steinmann, Seydoux, & Campillo,
2022; Moreau et al., 2022). The architecture resembles a convolutional neural network with
the difference that each layer produces an output and the convolutional filters, classically
learned in the case of convolutional neural networks, are restricted to a set of predefined
wavelets (Bruna & Mallat, 2013; Andén & Mallat, 2014). Considering a mother wavelet
ψ (t), we can define a set of filter bankψ λ(t) = λψ (λt) by dilating the mother waveletψ (t)
with a set of dilation factorsλ ∈ R . In the frequency domain, the set of wavelet banks
would be ψ̂ λ(ω) = ψ̂ (ω/λ). The dilation factorλ can then be defined as

λ = 2
k
Q , k= { 0,1, ...,JQ− 1} , (1)

–4–
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Figure 1. Map of Klyuchevskoy Volcano Group (KVG) with the seismic stations (SV13, IR18,

IR12, SV7, OR18, and ESO) considered in this study, shown with white triangles. The orange

triangle shows the lo cation of the Klyuchevskoy volcano. Averaged spatial density of the tremor

source lo cation according to Journeau et al. (2022) is shown with a colormap. Black circles and

purple crosses indicate hyp o centers of individual detections of tremors and deep long-p erio d earth-

quakes (DLP), resp ectively.
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withQ ∈ N being the number of wavelets per octave andJ∈ N being the number of octaves.152

This definition of the dilation factor provides a logarithmic grid of the center frequencies for153

the set of wavelet filter banks.154

By convolving a time seriesx(t) ∈ R with a set of wavelet filter banksψ λ(t) and
taking the modulus (which plays the role of an activation function), we obtain a real-valued
time-frequency representationUλ(t) of the time series called a scalogram such as

Uλ(t) = | x ⋆ ψ λ | (t), (2)

defining the first convolutional layer of the scattering network with⋆ standing for convolution
operation. In Andén andMallat (2014) the authors introduce a low-pass filterϕ(t) to retrieve
the first-order scattering coefficients, as

S 1x(t, λ) = (Wλ ⋆ ϕ)(t) = (| x ⋆ ψ λ | ⋆ ϕ)(t), (3)

where the low pass filterϕ(t) smooths the representation and makes it more stable for small
deformation of the signal. However, it also removes other small-scale structures of the signal
which might be important for pattern recognition tasks. This information is recovered by
repeating the convolution and modulus operation, retrieving higher-order scattering coeffi-
cients. Note that the set of dilation factorsλ differs with the layer of the scattering network.
With two sets of wavelet filter banks,ψ λ1(t) at the first layer andψ λ2(t) at the second layer,
we can calculate the second-order scattering coefficients

S 2x(t, λ1, λ2) = (|| x ⋆ ψ λ1
| ⋆ ψ λ2

| ⋆ ϕ)(t). (4)

By repeating this operation many times, we can retrieve higher-order scattering coefficients
which add more and more information. However, Andén and Mallat (2014) already con-
cluded that the information gain beyond second-order scattering coefficients is marginal
compared to the increasing computational costs. Therefore, we build a two-layer scattering
network recovering first- and second-order scattering coefficients. The wavelets of the scat-
tering network are Morlet wavelets as initially proposed in Andén and Mallat (2014). The
Morlet waveletψ (t) with a center frequencyf is a complex exponential multiplied with a
Gaussian window, defined by

ψ (t) = exp(− i2πft) exp(− t2/a2). (5)

While f are the center frequencies defining the modulation of the Morlet wavelet,adefines
the exponential drop-off of the waveform. We defineaas a function of the bandwidthd and
the center frequencyf , which in turn depends on the Nyquist frequencyfN of the signal
x(t) and the dilation factorλ

aj =
d

f
=

d

λfN
. (6)

At last, we define our low-pass filterϕ(t) retrieving the scattering coefficients from the155

scalogram at each layer. We use a pooling operation that ensures a stable and translation156

invariant representation for each window. The pooling operation retrieves a single value for157

each scale in the scalogram and, thus, acts as a low pass filter and downsampling operation158

(Dumoulin & Visin, 2016). There are many different types of pooling operations, filtering159

different types of information. In Seydoux et al. (2020), the authors applied the scattering160

network with an average pooling, which averages the scattering coefficients and collapses the161

time axis within the sliding window. Other possibilities are maximum pooling or median162

pooling where either the maximum or median value is taken for each scale in the scalogram.163

In this work, we will consider median pooling to mitigate the effects of impulsive short-term164

signals with tectonic or volcanic origin (see Appendix A for more details).165

4.2 Feature Extraction with Indep endent Comp onent Analysis166

With ICA —a blind source separation method— we obtain the data-driven features
from the scattering coefficients. The aim of ICA is the separation of multivariate signals
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Figure 2. Detailed view of a two-layered scattering network applied to continuous three-

comp onent seismograms with a sliding window. The dashed line in the 1st-order scalogram in-

dicates the data row which is convolved with the second-layer wavelet banks. The blue b oxes in

the scattering co efficient matrix show schematically where these sp ecific scattering co efficients are

stored.
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into independent, non-Gaussian source signals, which can be formalized in the following way

X = AS , (7)

whereX ∈ R F ×N are theN observations of dimensionF , A ∈ R F ×C is the mixing matrix,
and S ∈ R C ×N are the C independent sources. ICA estimatesS by applying the inverse or
pseudo-inverse of the mixing matrix, called unmixing matrix,W ∈ R C ×F to the observed
data inX

S = WX . (8)

ICA solves this equation by maximizing the statistical independence of the sources inS .167

The independence is estimated by a measurement of non-Gaussianity such as the kurtosis168

or negentropy (Hyvärinen & Oja, 2000). The number of sourcesC is not known and is one169

of the most important parameters impacting the results of ICA. Often, this parameter is set170

according to a measurement estimating the information loss such as the explained variance171

score. Note that ICA is often described as a generalization of principal component analysis172

(PCA), since the independent components (sources) have no constraints of orthogonality173

(Comon, 1994). Also in contrast to PCA, the sign and amplitude of the independent sources174

can not be determined, because bothS and A are unknown and a scaling factor can always175

be canceled out. Therefore, ICA does not provide any ranking to the retrieved sources. It176

is common practice to center and whiten the data inX since it constrains the unmixing177

matrix to be orthogonal and therefore the number of free parameters reduces (Hyv̈arinen &178

Oja, 2000).179

The scattering coefficients are collected in a data matrixX in such a way that the rows180

contain the time series of one scattering coefficient and the columns contain all scattering181

coefficients for one sample (Figure 2). We retrieve independent sources from the scattering182

coefficients matrix and analyze their time series, which have been shown to reveal interesting183

patterns in seismic time series (Steinmann, Seydoux, Beaucé, & Campillo, 2022; Steinmann,184

Seydoux, & Campillo, 2022). We refer to the time series of the independent sources as fea-185

tures for the following text. In a similar mindset, Hyvärinen et al. (2010) applied ICA to186

the Short-Term Fourier Transform (STFT) of electroencephalography (EEG) and magne-187

toencephalography (MEG) time series data, revealing more interesting information related188

to brain activity than ICA applied to the actual time series data. Additionally, ICA has189

shown successful applications in analyzing various types of time series data, such as the190

examination of InSAR image time series (Ebmeier, 2016; Gaddes et al., 2018; Ghosh et al.,191

2021).192

4.3 Seismogram Atlases with UMAP193

UMAP is a manifold learning technique, which has been introduced in the work of194

McInnes et al. (2018). Similar to ICA, UMAP is a tool to reduce the dimensions of a high-195

dimensional dataset for downstream tasks such as visualization. Since we are interested in a196

visualization of the high dimensional scattering coefficient matrix, we restrict the number of197

dimensions to two. Any dimensionality reduction technique comes with a loss of information198

and the loss depends on the objective of the dimensionality reduction technique. Because199

ICA performs a linear mapping, it preserves well the pair-wise distances but it loses in-200

formation about local structures. UMAP learns the manifold of the given data and, thus,201

performs better in preserving local structures at the price of distorting the global structure.202

Hence, the distances between neighboring points are more reliable than distances between203

clusters of data points or the area of a cluster. Without going into further details, the204

inner workings of UMAP are based on topological data analysis and Riemannian Geometry,205

providing a complex but safe and sound mathematical background (see the original work of206

McInnes et al., 2018, for more details). It shares similarities with t-SNE, which has been207

used extensively for visualizations since its appearance in the 2000s (Van der Maaten &208

Hinton, 2008). However, compared to UMAP, t-SNE performs poorly in preserving global209

structures and its computation time is much slower (Becht et al., 2019). Despite its relatively210
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recent introduction, UMAP has been already utilized in many scientific domains to create a211

two-dimensional representations, simplifying the visualization of large and high-dimensional212

datasets. The resulting two-dimensional UMAP spaces have been coined “atlases” such as213

the activation atlas of neural networks (Carter et al., 2019) or the metagenomic atlas (Lin214

et al., 2022).215

UMAP comes with a set of hyperparameters to tune such as the number of neighbors216

and the minimum distance, drawing the focus either towards preserving local or global217

structures. The number of neighbors limits the number of neighboring points when UMAP218

learns the local manifold structure. A low number draws the focus to the local structure219

while losing the bigger picture. A large number draws the focus on the global structure while220

losing finer details. The minimum distance controls how closely UMAP is allowed to bring221

data points together. A low number results in a more dense and clumpier representation222

and preserves better the local structure of the data. A large number avoids putting points223

close to each other and draws a broader picture of the data.224

5 Results: the features of station SV13225

We apply the scattering network with a sliding window of 20min and an overlap of226

10min to the three-component seismograms of station SV13, resulting in a temporal reso-227

lution of 10min of the scattering coefficient matrix. The minimal amount of seismic pre-228

processing and the exact setup of the network is described in Appendix B and Figure B1229

therein. We visualize the time series of the first- and second-order coefficients of the east230

channel together with the catalog of Journeau et al. (2022) in Figure B2. The scattering231

coefficient matrix is centered and whitened with a PCA before we apply ICA. We apply ICA232

models with four (M 4), 12 (M 12), and 50 (M 50) independent sources to explore the impact233

of the number of components.M 4 reaches an explained variance score of 94%,M 12 reaches234

an explained variance score of 98% andM 50 reaches an explained variance score of 99.6%.235

Figure 3 shows the smoothed time history of the independent sources (features) of each236

model. The features show negative and positive values of arbitrary units centered around237

zero due to the centering and whitening of the input data. We sort the features according238

to their maximum absolute amplitude appearance in time, helping the visualization of any239

time-dependent processes.240

6 Discussion241

6.1 The Differences of The ICA Models242

The features of the three models show very different time series and in the following, we243

want to use the three models to understand better the underlying seismic data. First of all,244

we provide a qualitative comparison between the features of the three models. While there245

is no single feature matching betweenM 4 and M 50 (Figure 3b and d), we can find similar246

features betweenM 4 and M 12 such as the second feature in both models (Figure 3b and247

c). M 50 is very different to the other two models, since its features appear more sparse, i.e.248

they are mainly centered around zero except for a short duration. Moreover, it is striking249

that if one feature shows large amplitudes in negative or positive direction (saturated blue250

and red colors), almost every other feature is centered around zero. These characteristics251

of M 50 together with the sorting of the features result in this color-saturated diagonal line252

in the time-feature space. It appears that at each data point in this 50-dimensional feature253

space is located at the center for 49 dimensions. In contrast, the data points represented by254

the features ofM 4 and M 12 do have non-zero values for more than one dimension.255

6.2 Interpreting The M 4 Features wi th The Mixing Matrix256

To understand better what the features represent, we recall the equation of ICA (see257

Equation 7 and 8). The whitened and centered scattering coefficient matrixX is estimated258
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Figure 3. ICA results for station SV13. In (a) , the histogram describ es the daily numb er

of tremor detections and the colored circles indicate the daily activity level of the Klyuchevskoy

volcano, where yellow represents an ongoing eruption and dark blue represents low activity. (b)

shows the features of the 4-comp onent mo del M4 , (c) shows the features of the 12-comp onent
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sorted with resp ect to their absolute maximum value in time for b etter visualization.
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as the sum of rank-1 matrices, resulting from the outer product of a feature (rows inS )259

with the corresponding columns in the mixing matrixA . Hence, the columns ofA reveal260

how each feature contributes to the estimation ofX . The visualization of the columns of261

A and its outer product with the corresponding feature can help to understand better the262

underlying signal characteristic of each feature. In Figure 4 we reorganize and visualize the263

mixing weights of theM 4 model according to the center frequencies of the first- and second-264

order wavelets. We can use the shown mixing weights to attribute signal characteristics to265

the features ofM 4 in Figure 3b. For example, feature 3 shows mainly negative amplitudes266

during the occurrence of cataloged tremors and positive amplitudes during the absence267

of tremors (Figure 3a and b). The corresponding mixing weights show mainly negative268

amplitudes peaking atf1 =2Hz in all components and for both first- and second-order269

scattering coefficients (Figure 4). Figure 5a, b, and c show the reconstructed first-order270

scattering coefficients, resulting from the outer product of the third feature with its mixing271

weights. We disregard the second-order scattering coefficients for visualization purposes,272

however, we want to emphasize that they contain important signal information. We also273

add the mean over the scattering coefficients, which we subtracted before the ICA during the274

whitening process. The reconstruction makes clear that the tremor periods are characterized275

by a broadband amplitude increase peaking around 2Hz. Note that both the mixing weights276

and the feature amplitudes during tremor-active periods are negative and the outer product277

reveals an amplitude increase. This example shows the ambiguity of the sign attached to278

the sources: any change of sign in feature 3 can be equalized with a change of sign of the279

corresponding column vector of the mixing matrix, resulting in the same rank-1 matrix.280

Another interesting example is the second feature, which shows strong positive am-281

plitudes during the tremor sequences in August and September (Figure 3a and b). The282

corresponding mixing weights show positive and negative amplitudes depending on the fre-283

quencies f1 and f2 and the channel (Figure 4). Similar to before, we can visualize the284

first-order scattering coefficients of the obtained rank-1 matrix by the outer product of the285

mixing weights with the second feature (Figure 5d, e, and f). We see a clear anti-correlation286

for scattering coefficients below and above 1Hz for the east channel (Figure 5d). An am-287

plitude increase above 1Hz occurs together with an amplitude decrease below 1Hz (e.g.288

the tremor-dominated time periods in August and September). Similarly, an amplitude289

increase below 1Hz occurs together with an amplitude decrease above 1Hz (e.g. October290

to December 2015). This anti-correlation can be already observed by the negative and pos-291

itive weights of the mixing matrix (source 2, Figure 4). Weights with the same sign show292

the scattering coefficients which correlate with the corresponding independent source. The293

observed anti-correlation is nothing physical and this rank-1 matrix reflects only a part of294

the data without taking into account the other independent sources. Nonetheless, Figure 5295

suggests that the tremor period in August and September is different from the other tremor296

episodes mainly due to different patterns at the east component around 1Hz.297

6.3 Subtle but Complex Signal Alterations Revealed by M 50298

An outstanding characteristic ofM 50 is the successive domination of a single feature in299

time. The large number of features makes it unfeasible to visualize and interpret all mixing300

weights and, therefore, we only focus on a subset of features to show the difference toM 4.301

Figure 6 shows the mixing weights associated with the features 18 to 22, which describe302

the tremor onset at the beginning of December with negative and positive amplitudes.303

Compared to the mixing weights of theM 4 model, the mixing weights of theM 50 show finer304

nuances and more complex patterns across neighboring scattering coefficients, revealing305

signal changes beyond pure amplitude increases or frequency shifts. At this point, we306

want to recall thatM 4 reaches an explained variance score of 94% andM 50 reaches an307

explained variance score of 99.6%. We suggested that the third feature ofM 4 is related308

to the broadband energy peaking around 2Hz and it correlates with the tremor detections.309

This indicates that all recorded tremors are characterized by this broadband amplitude310

variation and it explains a large part of the data’s variance. However, thisM 4 feature311
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does not exist anymore withM 50 and the tremor active periods are described by multiple312

features.M 50 reveals that these tremor signals show complex variations beyond broadband313

amplitude variation. It seems that these more complex signal variations are a small part314

of the data’s variance – we gain less than 6% variance fromM 4 to M 50 – but they might315

contain crucial information about ongoing volcanic processes. Interestingly, these signal316

alterations captured by the features do not occur randomly in time but they occur for a317

certain amount of time before another pattern takes over.318

The different ICA realization can be seen as a hierarchical ICA, where a model with a319

larger number of components – such asM 50 – can account for smaller differences in the signal320

characteristics. In fact, this approach shares similarities to the hierarchical exploration321

of continuous seismograms with hierarchical clustering (Steinmann, Seydoux, Beaucé, &322

Campillo, 2022). However, hierarchical clustering assigns a cluster to a data point which can323

contain multiple types of signals. The present study shows an approach where a single data324

point is described by multiple features, which correspond to specific signal characteristics325

captured with scattering coefficients.326

6.4 Comparison to Other Stations327

The M 50 model of station SV13 pictures a continuous seismogram where a pattern328

occurs mainly once or twice in a constrained time window during the whole recording time.329

This seems surprising and it might be a particular characteristic of the data recorded close330

to the active Klyuchevskoy volcano. By retrievingM 50 models from different stations with331

an increasing distance to the volcano, we can make a qualitative comparison to station332

SV13 (see Figure 7). The considered stations are located between 5 and 122 km away from333

the active volcano. In general, the diagonal line in the time feature space degrades with334

increasing distance to the volcano. The periods with a high detection rate of tremors335

(December to February and from March onwards) show this characteristic diagonal line336

even for stations further away such as SV7 and OR18. This suggests that tremor signals337

are mainly responsible for the diagonal line in the time feature space. Interestingly, stations338

close to the volcano, show an almost continuous diagonal line, indicating a continuous flow339

of information coming from the volcano. The catalog relies on a stable signal seen by the340

majority of stations within the network (Journeau et al., 2022). Therefore, tremor signals341
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with a weak amplitude witnessed by only close-by stations are not detected and located.342

The 50 features of the individual stations indicate an almost constant flux of information343

coming from the volcano, not captured by the catalogs.344

7 Data Exploration with Seismogram Atlases345

We can complement the observations and interpretation of the features with seismogram346

atlases for each station obtained with UMAP (Figure 8). We color-code the data points with347

their corresponding calendar time, highlighting the time evolution of the seismic time series.348

The seismogram atlases of SV13, IR18, and IR12 picture complex structures where data349

points with different colors hardly overlap (Figure 8a-c). Many data points with a similar350

color seem to be located close to each other, which gives rise to a smooth color gradient351

across the complex data structure. Therefore, neighboring data points are likely close to352

each other in time, suggesting smooth and slow signal changes. However, there are also353

isolated or disconnected structures indicating more sudden signal changes from time to354

time, especially for stations IR12 and IR18. The atlases of the data recorded at SV7, OR18,355

and ESO look different: the data points are more concentrated at the center with partly356

overlapping colors (Figure 8e-f).357

The seismogram atlases share the same hyperparameters: the minimum distance is set358

to 0.5 and the number of neighbors to 50. We tested different hyperparameters for the data359

of station SV13 (see Figure B3). The atlas depicts different cluster shapes and distances360

with regard to the hyperparameters, emphasizing the limited notion of global distances and361

structures in the atlas. However, all the examples confirm the smooth time gradient and362

little to no overlap of different time periods.363

SV13 is the closest station to the volcano and shows a variety of connected and dis-364

connected patterns, picturing a complex signal evolution due to the active volcano. The365
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catalogs of Journeau et al. (2022) provide signal labels that can help to identify known366

areas in the atlas. In the upper image of Figure 9 we mark data points that match in time367

with a known detection of tremor signals, DLP swarms or earthquake-like signals. We want368

to note that Journeau et al. (2022) provides these labels based on thresholding variables369

of the network’s covariance matrix. According to that, they label the event detections as370

either earthquake-like and tremor signals. In total, we have 47.360 data points and we can371

connect 13.027 data points to known tremor signals, 682 data points to earthquake-like sig-372

nals and 38 data points to DLP swarms. Therefore, most of the 47.360 data points do not373

match with a cataloged event. Nevertheless, the matching data points cover almost the same374

area as the non-matching data points, indicating that the non-matching data points contain375

similar signals to the cataloged signal types. Thus, the data contains almost no quiet pe-376

riod (the classic seismic ’noise’), and tremor- or earthquake-like signals seem to be recorded377

all the time. This agrees with the findings of Makus et al. (2023) where their reference378

correlation function for the same dataset is dominated by tremor activity. The scattering379

coefficients contain information about impulsive and continuous signal characteristics and,380

therefore, the earthquake-like signal are separated from the tremor-like signals in the atlas.381

However, we see that the shared boundaries are continuous and blurry, indicating that we382

have continuous transitions between the two signal types. Journeau et al. (2022) observed383

the same characteristic within the variables space obtained from the network’s covariance384

matrix. The tremor signals picture complex data point structures, which mainly show a385

continuous evolution in time (see Figure 8a and Figure 9). The earthquake-like signals form386

a data cloud structure in the south-east of the seismogram atlas with no strong time evo-387

lution. The DLP swarms are located close to each other at one of the blurry boundaries388

between tremor- and earthquake-like signals. This suggests that the different DLP swarm389

detections share signal similarities and they have signal characteristics of both earthquake-390

and tremor-like signals, confirming the common perception of DLP swarms.391
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To visualize the signals behind the data points and to understand better the UMAP392

space, we want to follow the active tremor period from the beginning of December to the393

end of February in the atlas and depict the spectrograms behind some data points as an394

example (Figure 9). Note that the atlas contains the information of the three component395

data but we only visualize here the spectrograms of the east component. The start of the396

tremor period begins with a separated linear structure in the north of the atlas, indicating397

a sudden onset of the tremor signals. During the first weeks until the end of December, the398

tremor signal is continuous and shifts in frequency and amplitude. The connected and curved399

structure indicates continuous changes in the signal characteristics. At the end of December400

repetitive impulsive events seem to superimpose the continuous signal and the connected401

and curved structures end in a relatively small data cloud, indicating a temporary stop of402

the continuous signal change. We can see something similar happening for the 50 features:403

a rapid succession of a few features occur at early December compared to late December404

(Figure 3d). From the small data cloud, the data points form another curved elongated405

structure during January before they connect to another data cloud structure at the end of406

January (Figure 9). The spectrograms show that during these times the repetitive impulsive407

signals change their interval time and frequency content, while the continuous broadband408

signals change their amplitude and frequency content (green and red framed spectrograms409

in Figure 9). After mid-February the continuous and impulsive signals decease and the data410

points enter the cluster of earthquake-like signals. The time evolution of the seimogram411

atlas is even better captured in the attached movie S1.412

8 Conclusion413

By combining ICA with a scattering network, we retrieved continuous and data-driven414

features from seismic time series recorded at individual stations in the vicinity of the KVG.415

An ICA model with 4 independent sources obtained an explained variance score of 94%416

and two of its features correlated with the general occurrence of tremor signals. Thanks417

to the mixing weights we were able to tie one of the correlating features to a broadband418

amplitude increase centered around 2Hz. The low number of sources can not account for419

the smaller differences in the tremor signals and it finds features that describe most of the420

tremor signals. An ICA model with 50 independent sources obtained an explained variance421

score of 99.6% and depicts a seismic time series with a succession of different short-lived422

patterns across the whole recording time. A comparison to other stations located further423

away from the active Klyuchevskoy volcano suggested that this behavior is unique to the424

data recorded close to the volcano. The seismogram atlases obtained with UMAP depict425

continuous and sudden signal characteristic changes, in particular during times of cataloged426

tremors. It revealed a sudden onset of tremor signals with the first occurrence of shallow427

tremors in early December, while the stop and re-start of tremors in February and March,428

respectively, are characterized by a more continuous emergence of these signals (see also429

movie S1). During the one-year recording time, the data points related to tremor signals430

continuously explore new terrain in the seismogram atlas, indicating that there is always a431

minimal amount of signal difference. This is in agreement with theM 50 model where each432

feature dominates for a short period of time. The seismogram atlas adds information if the433

seismic signals change rather continuously or suddenly by placing the next data point far434

away or close by. One of the main limitations of this study is that we are not able to link the435

changing characteristics to physical processes. The mixing weights and the reconstructed436

scattering coefficients help linking the data-driven features to information encoded in the437

scattering coefficient space, however, the interpretation is limited as we have seen for the438

second feature in theM 4 model. Moreover, theM 50 model provides too many features with439

complex mixing weight patterns, making an individual inspection not feasible. Nonetheless,440

the features revealed unique characteristics of the seismic time series recorded close to the441

volcano, indicating that the complete seismic time series contains interesting and subtle442

information which are not captured by conventional methods such as discrete event catalog443

or hand-engineered features. The seismogram atlases offer interesting and novel ways to444
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Figure 9. The upp er image shows the seismogram atlas of station SV13. Data p oints matching

in time with a cataloged earthquake- or tremor-like signals are colored, data p oints with no match

are grey. Each data p oint represents 20 min of three comp onent waveform data and for some data

p oints (marked with the colored arrows) we visualized the sp ectrogram of the east comp onent. The

color-co ding of the arrows matches the color-co ding of the sp ectrogram’s frame and the arrows

p oint towards the nex t data p oint in time.
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Figure A1. Comparison between Fourier spectrum and scattering coe�cients of a seismic signal.

(a) shows an example seismogram with normalized amplitude in time domain. (b) shows its

corresponding Fourier spectrogram. (c) shows the Fourier amplitude spectrum and the �rst order

median and maximum pooled scattering coe�cients of the signal shown in (a) . (d) shows the

second order maximum pooled scattering coe�cients and (e) shows the second order median pooled

scattering coe�cients as a function of the center frequencies f 1 and f 2 .

want to focus on tremor signal.494

495

Appendix B Data Processing and Scattering Network Design496

The seismic data is demeaned, detrended, and down-sampled to a sampling rate of497

25 Hz. The �rst layer wavelets are adapted to the possible frequency content of the tremors;498

their center frequencies range from 0:78 to 10 Hz with a logarithmic grid (see Figure B1a and499

b). The second layer wavelets start at much lower frequencies since they gather information500

about the modulation and shape of the signal (Figure B1c and d). The �rst layer covers 4501

octaves and is densely spaced with 4 wavelets per octave. The second layer covers 8 octaves502

and is sparsely sampled with 1 wavelet per octave.503
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